DARPA looks to use lasers to replace large and costly optical systems
Photonics is the science of light generation, detection, and manipulation. Innovations in integrated photonics have allowed the miniaturization of key optical components and the ability to arrange several elements on a single silicon chip.
When combined with lasers, photonic integrated circuits have the potential to replace large and costly optical systems with chip-scale solutions, according to the Defense Advanced Research Projects Agency.
However, due to differences in the properties of the materials that compose them, lasers and photonic integrated circuits are difficult to combine onto the same platform, limiting the benefits of integration and preventing broad technology impact.
To address this challenge, DARPA developed the Lasers for Universal Microscale Optical Systems (LUMOS) program, which aims to bring high-performance lasers to advanced photonics platforms. LUMOS will address several commercial and defense applications by directing efforts across three distinct Technical Areas.
The first LUMOS Technical Area brings high-performance lasers and optical amplifiers into advanced domestic photonics manufacturing foundries. Two research teams were selected in this area: Tower Semiconductor and SUNY Polytechnic Institute. These performers will work to demonstrate flexible, efficient on-chip optical gain in their photonics processes to enable next-generation optical microsystems for communications, computing, and sensing. LUMOS technologies will be made available to future design teams through DARPA-sponsored multi-project wafer runs.
The second LUMOS Technical Area seeks to develop high power lasers and amplifiers on fast photonics platforms for microwave applications. Research teams include Ultra-Low Loss Technologies, Quintessent, Harvard University, and Sandia National Laboratories.
The final LUMOS Technical Area creates precise lasers and integrated photonic circuits for visible spectrum applications with an ambitious goal of “wavelength by design” across an unprecedented spectral range. The teams will seek to develop lasers at many challenging wavelengths throughout the program to enable compact atomic sensors for navigation, precise timing solutions, and emerging quantum information hardware. Selected research teams include Nexus Photonics, Yale University, California Institute of Technology, Sandia National Laboratories, and the University of Colorado at Boulder.
“LUMOS is part of the third phase of DARPA’s Electronics Resurgence Initiative (ERI) – a five-year, upwards of $1.5 billion investment in the future of domestic, U.S. government, and defense electronics systems,” said Gordon Keeler, program manager in DARPA’s Microsystems Technology Office. “As an ERI program, LUMOS aims to create unique, differentiated domestic manufacturing capabilities that are accessible to the DoD through the enhanced capabilities of existing foundries and through DoD-relevant demonstration systems created by the program performers.”
Read more HERE.